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ABSTRACT

Acceleration data reduction must be undertaken with a

complete understanding of the physical process, the means by

which the data are acquired, and finally, the calculations

necessary to put the data into a meaningful fornmt.

This paper will discuss the acceleration sensor require-

ments dictated by the measurements desired. Sensor noise,

dynamic range, and linearity will be determined from the phy-

sical parameters of the experiment.

The digitizer requirements will be discussed next. Here

the system from sensor to digital storage medium will be inte-

grated, and "rules of thumb" for experiment duration, filter

response, and number of bits wilt be explained.

Data reduction techniques after storage are next. Time

domain operations including decimating, digital filtering, and

averaging will be covered. Frequency domain methods, includ-

ing windowing and the difference between power and amplitude

spectra, will be discussed. Simple noise determination via

coherence analysis shall be included.

Finally, an example experiment using the Teledyne Geotech

Model 44000 Seismometer to measure accelerations from 10-4g to

10-10g over a bandwidth from I Hz to 10-6 Hz will be discuss-

ed. The sensor, data acquisition system, and example spectra

will be presented.
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INTRODUCTION

In order to acquire end analyze data in such a way as to charac-

terize the acceleration environment, one must consider three primary

areas:

. The sensor(s) themselves. The accelerometers must be se-

lected carefully in order to be certain that they are suited

to measuring the anticipated signals.

. The Data Acquisition System. For later analysls, the data

must be converted to a digital form and stored. This pro-
cess involves slgnal conditioning, analog Co digital conver-
sion, and storage. These steps must dovetail with the sen-

sor such that they do not adversely affect the experimental

goals.

. The Analysls Techniques. The digital representation of the
data must be operated upon in some way to provide meaning-

ful, standard data. The methods used have inherent limita-
tions and assumptions. One must have a good working knowl-

edge of these factors in order to make quantitative judg-
ments.

This paper will briefly discuss each of these three areas to

explain techniques and terminology. Finally, an example experiment

involving vertical accelerometer data will be presented. The data set

is from a Teledyne Ceotech Hodel 64000 Seismometer and was collected

continuously over an interval of 72 hours. Signals due Co teleseismic

earthquakes, tidal fluctuations, and system noise were recorded. Accel-

eratlon levels as low as I0-12 g were discernible from system noise.

The data was Fourier Transformed to yleld spectral components with

frequencies as low as 3 x 10 -6 Hz.

SENSOR REQUIREI4ENTS

Dynamic Range

The dynamic range refers to the ratio between the largest and

smallest signals measured. Obviously, the sensor selected must meet or

exceed that dynamic range.
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In the case of the Spacelab experiments, the anticipated signal

is not well defined. Accelerations as low as 10-8 g may be expected,

particularly at low frequencies. At higher frequencies, 10-3 g is

likely during a typical experiment. The sensor chosen must therefore

have an intrinsic dynamic range of st least 105 or I00 dB. A single

figure can be misleading, however. Generally, we know what the peak

acceleration permissible without distortion is. The minimum measurement

will be limited by the system noise, which will in general have some

variation with frequency. Bandwidth, too, is important in determining

dynamic range requirements.

Consider a simple case where an instrument has 10-18 g2/Hz

noise, flat from dc to 100 Hz. _f we were to integrate this power over

a bandwidth from dc to 1 Hz, then the rms power would be 10-9 g. How-

ever, if we were interested in low frequencies and limited our bandwidth

to 10 -4 Hz, the rms power would be only 10-11 g. The important point

here is that the average signal amplitude in time can translate to

vastly d_fferent power spectral densities, dependent upon the bandwidth

of interest.

Dynamic range is then actually a function of frequency. The

sensor noise and full scale range are intertwined with the dynamic

range.

Noise

After determining the dynamic range, this scale must be referred

to an absolute value. The sensor should not have noise any higher than

the smallest anticipated signal. _n fact, a good rule of thumb is that

the sensor noise at any given frequency should be at least 10 dB below

the anticipated signal. Specific processing methods may require an even

lower noise margin. This must be remembered as part of the sensor

selection.

For the apace station case already mentioned_ we might want an

accelerometer with internal noise no greater than 10 -18 g2/Hz, particu-

larly at low frequencies. This also implies that the dynamic range

requirements have been increased to 106 or 120 dB.
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Linearlty

Imagine that a full scale pure sine wave signal at a given

frequency is applied to our sensor. If the response of our sensor is

not purely linear, then the output signal will have components at all

integer multiples of that frequency. If a pair of sine waves are

applied, then both the difference and aLnn frequencies will appear at the

sensor output. Hence, large signals at high frequencies can produce

apparent signals at much lower frequencies due to response nonlinearity.

Since nonlinear behavior is not a one-to-one function, process-

ing cannot extract the original input signal. We must rely on the

instrument itself to provide output with high fidelity.

The expected signal range must not be such that harmonics or

sum/difference signals will be created in other parts of the spectrum.

I£ we define nonlinearity to be the size of the first harmonic of a full

scale signal, then the nonlinearity must be less than 10 -5 if the full

dynamic range is to be utilized at the harmonic frequency.

All the above is really only an introductory discussion of noise

and dynamic range requirements. A hypothetical case is shown in Figure

I. Here, the three performance specifications, dynamic range, noise,

and linearity are drawn as a function of frequency from I to 10 -6 Hz.

Now consider a signal spectrum as shown in Figures 2a and 2b. The

sensor has gain that is 20 dB at all frequencies. The input and output

spectra are shown superimposed on our hypothetical sensor performance

curves. Figure 2a will be represented properly at the sensor output, as

it does not exceed the performance of the sensor. Figure 2b shows the

effects of nonlinearity and excessive noise. The noise is apparent in

the output spectrum, as is the harmonic of the input peak that exceeded

the sensor linearity.

DATA ACQUISITION SYSTEM

With an appropriate sensor selected, the signal must be inter-

faced with some system in order to provide digital data for later pro-
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cesslng. The data must be stored on some medium suitable for the pro-

cessing computer to read and work with. Discussion of some of the most

importsnt specifications follow.

Signal Conditioning

In the case where the sensor signal is an analog voltage, there

will most likely be a requirement to condition that data prior to digi-

tization. The most important areas include gain and filtering.

The gain serves to match the noise and dynamic range of the

sensor to that of the digitizer.

Filtering prevents aliasln8. Figure 3 shows the effect of

sampling on a spectrum. The signal spectrum is folded about the axis at

w=0 and repeated at every interval of the sampling rate. If at frequen-

cies greater than the sampling rate divided by two (Nyquist Frequency)

the input signal has non-zero frequency components, then they will be

*'folded" back into the spectrum. This can be avoided by filtering the

input spectrum such that the signal at the Nyquist frequency is below

the resolution of the digitizer. The sample rate and digitizer resolu-

tion then dictate the required filter response. Figure 4 shows the

filter requirements as a function of sample rate, digitizer dynamic

range, and desired signal bandwidth.

already.

Sample Pate

The sample rate requirements have been briefly mentioned

The sample rate is driven by two factors:

.

.

Signal Bandwidth. The desired signal bandwidth along with
the antl-alias filter response help specify the minimum
Nyqulst frequency.

Oversampling requirements. If the quantization noise spec-
trum is too large for a given digitizer, the noise spectrum

can be reduced by an increase in sample rate followed by
digital filtering (as opposed to buildlng/buying a higher
resolution digitizer).
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Signal bandwidth refers here to the frequency interval over

which we want to see the data. If the filter has a 3 dB corner at the

edge of this band, it will roll off to a point below the digitizer reso-

lution at some higher frequency fro" The Nyquist frequency must be at

least this great, hence the sample rate fs > 2fro" Refer to Figure 4,

where fro = fNy. Of course the fro can be decreased by a steeper roll-

off in the filter response. The tradeoffs here are between the filter

response and sample rate. A more complex filter is required to have the

signal bandwidth a larger fraction of the Nyquist Frequency.

Oversampling is mentioned here as a means of decreasing the in

band quantization noise. The enhancement as a function of sample rate

will be discussed further in the following section.

Resolution or Number of Bits

A digitizer with sufficient dynamic range to complement the

sensor must be selected. It would be foolish to use an 8-bit ADC for

the purpose of digitizing a voltage with I00 dB dynamic range. Here the

digitizer must be specified in much the same way as the sensor so that

they will complement one another in terms of dynamic range and noise.

Scaling: The input amplifier must be set up to match the full

scale range of the sensor to that of the digitizer. Figure 5 shows a

simplified block diagram of a digital acceleration measurement system.

If we have a maximum voltage for the ADC defined as VMAX, then we do not

want to exceed this value through the sensor and filter/amplifier. If

the transfer functions for the sensor and filter/amplifier are Fs

(V/m/s 2) and FA (V/V) respectively, then we can express the desired VMA X

to aMA X (both values are 0 to peak measurements) relationship:

VMA X = FsF A aMAX.

We simply adjust FA to make the maximum anticipated acceleration

aMA X yield the VMA X for the ADC. The anticipated acceleration should be

estimated conservatively, as exceeding this limit will result in a hard

clip of the data acquisition system.
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Dynamic Range: The required dynamic range for the ADC can be

specified in number of bits N. This is a function of the sample rate

and least significant bit Q. The root mean square noise for a digitizer

is:

V_D = Q 2/12

If the signal is much larger than Q, then this noise is white

and its spectrum is distributed over the band from -fNy to fNy. fNy is

the Nyquist frequency and is one half of the sampling frequency fs"

Figure 6 shows the spectra of two different sampling processes. The

lower plot has twice the sample rate of the upper plot. The rms ampli-

tude in each case is the same, but the energy is spread out over a

greater bandwidth in the lower case. The spectrum of the quant[zation

noise has amplitude:

V_D = Q 2/12fs

Relating this to acceleration:

V_D 2 2 2 , 22 n= FsFAaHAX/3fs

Here we have used the fact that for a digitizer of resolution N,

Q is related to VMAX:

Q = VMAX/2 N-l

If we look at the quantization noise spectrum referred to accel-

eration, we can get an estimate of the dynamic range requirements:

For example, imagine an experiment where the maximum acceleration was to

be 10 -3 g. If we used a 16-bit ADC and 100 Hz sample rate, then the

power spectral density of the quantization noise can be calculated:

or
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AN = 8.8 x 10 -10 g//Rz

We see that we can reduce the qi/antlzatlon noise density simply by

increasing the sample rate. _f _torage capacities permit, the sample

rate can be increased as much _s desired to capitalize on this phenome-

non. The tradeoff here t_ with the maxlmum sample rate achievable,

along with storage an_ _omputatlon limitations.

Importantly, no single figure for the dynamic range has been

specified here. This is because the scaling was done using an estimate

of the time signal. The spectral nature of this signal will change

experimental slgnal-to-nolse ratio. If, for example, the signal were a

pure sine wave, then the spectral power would be confined to a small

part of the spectrum and would be very large. If, on the other hand,

the signal was Causslan and distributed evenly over all frequencies,

then the spectral power at each frequency would be far smaller.

Clearly, the dynamic range calculations would be very different for

these two cases.

ANALYSIS AND CONPUTINC

After the experiment is over, we will have some data set con-

sisting of time samples in a digital foraat. This data will be of

interest in both the tlue and frequency domain.

Time Analysis

For a start, we may at least want to see the signal as a func-

tion of time, "strip chart" style. However, if we have data that was

sampled every 10 milliseconds, the strip chart over a period of a day

could be pretty long. Furthermore, the computation time to operate on

such a large array can be prohibitive.

Size Reduction

The physical process of filtering and sampling the acceleration

data during the experiment limits the bandwidth and resolution obtain-

able in the analysis. A typical broad-band experiment can produce many
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Mbytes of data for any given channel. This data set cannot be operated

on in any but the most rudimentary way as a whole. We will want to

break the entire set down or compile it in such a way as to make these

subsets more manageable.

If we simply take a subset of the data, this makes things more

manageable, but places limitations. A Fourier transform of a set of

data with duration TEXp and sample spacing Ts will have spectral resolu-

tion and bandwidth:

Minimum frequency = I/TEx p

Frequency resolution = W/TEx P
a

Maximum frequency (or bandwidth) = I/2T s

Where W is the window factor, always greater than unity. Windowing is

discussed further below.

The simple subset has as high a bandwidth as could be possible

under the constraints of the experiment, but the frequency resolution

and minimum frequency suffer from the truncation process.

Decimation

We would decimate the data set to a more manageable size. By

picking every Nth sample the array size will be decreased by an equal

factor. This process can induce aliasing, so the decimation process

must be preceded by digital filtering.

Digital Filtering

The raw digital data set can have a bandwidth too great to

permit practical calculation of Fourier transforms of low-frequency

components with high resolution. We can simply filter the data digital-

ly down to a smaller bandwidth and decimate in order to "zoom in" on the

lower frequency components.

Two basic techniques for digital filtering are in common use.

The filters are often designated as recursive or nonrecursive.
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Recursive filters: These fitters calculate a single time ele-

ment from a linear combination of previous input and output time ele-

ments. "Recursive" refers to the fact that previously output samples

are "fed back" to the calculation process. They require little computa-

tional time, since typically only a few previous elements are used in

each calculation. However, a precise desired response can be hard to

form from this technique.

A typical recursive filter design is based on analogy with

analog filters. Desired poles and zeros are used to determine the

Laplace transform of an analog filter. The Laplace transform can then

be converted to a Z-transform. Finally, the Z-transform coefficients

yield the time series domain function required for the filter. This

process is generally approached from a pole-zero starting point. An

arbitrary frequency response cannot in general be obtained from a

recursive filter.

Other disadvantages of recursive filters arise from their close

analogy with analog filters. The existence of poles in their response

can cause calculations to "explode" during the filtering process.

Furthermore, the phase response of a recursive filter is nonlinear func-

tion of frequency. Hence different frequency components of the time

series will have different time delays through the filter. This can

distort the time series of some discernible "event" significantly.

Nonrecursive or Finite Impulse Response (FIR) Filters: Another

class of digital filter is the FIR filter. This filter is simply a

linear array of coefficients that are convolved with an equal number of

elements of the time series to yield a single filtered time series ele-

ment. Figure 7 shows the operation of calculating a single filtered

element from a time series. The filter coefficients (top) operate on

the time series (below):

N

Ym = E anXm-n

n=o
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Where N is the length of the filter, whose coefficients are the an . Ym

is the output and X_ is the input of the filter.

As you might expect, this can require a significant amount of

computation for long filters. The beauty of this technique is the fact

that the Fourier transform of the FIR filter coefficients is the

response. Likewise, any desired frequency response can be simply

inverted to yield a filter. The limitation here is that there must be a

sufficient number of coefficients calculated in order to provide ade-

quate accuracy in the frequency response.

This filter suffers from none of the weaknesses of the recursive

filter. Phase response is linear with frequency. Furthermore the

finiteness of the number of elements used in the calculation precludes

the possibility of a numerical overflow.

Typically, unless the application is real time, FIR filters are

the best choice for data reduction. They can be shortened at the

expense of response accuracy and suffer from none of the other ailments

of recursive filters.

Decimation versus Different Sample Rates

The process of digitally filtering a huge data set in order to

band limit it su£ficientty for decimation can be an excessively long

effort. Furthermore, if we were to sample at 100 Hz continuously over a

period of 10 days, we would generate 173 Mbytes of data! (assuming 2

bytes per sample). This can present something of a storage problem in

addition to requiring large processing times. An alternative method

exists, namely to filter several channels from each sensor and record

them each at different sample rates. These separate data sets would be

almost the same as postprocessed data already discussed.

The largest weakness to this scheme is the loss of bit enhance-

ment for the low frequencies. Since they would be sampled differently,

their quantization noise spectral densities would differ accordingly.
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Obviously, additional hardware in the form of filters, multiplexers

and/or digitizers would be required. This option is not considered in

detail here, but the same techniques used can be applied to each of the

channels at their different sample rates.

Frequency Domain Processing

The time data, even after filtering, is not terribly useful for

quantitative evaluation. We can determine peak and t'ms amplitudes of

given time series. Usually, only if a known process is occurring, is

the time series useful for calculation. For example, an indlvldual

walking very near the accelerometer might leave a discernible

"fingerprint" in the data. For environmental calculation, we will

likely need an estimate of the frequency dependence of the measured

acceleration.

Fourier Transforms

A function in time will have a Fourier transform defined by:

F(w) = f _ f(t)e-iWtdt

Likewise, the inverse transform is as follows:

r
f(t) = _ . F(w)e-lWtdw

A function that is sampled in time is in essence multiplied by

the sampling function. Figure 8 shows the effect of sampling on a wave-

form. The sampling function is simply a series of infinitely narrow

pulses of unity amplitude.

If this sampling function in time is assumed to be evenly spaced

at time intervals Ts, with unit amplitude, it can be shown that the

Fourier transform of the sampling function is a series of Dirac delta

functions at all positive and negative integer multiples of 1/T s.

A sine wave can be shown to have a Fourier transform that con-

sists of a pair of delta functions at +/-(I/T), where T is the period of

the sine wave.
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Of course, we cannot measure the signal for infinite tlme, so we

must window the signal somehow. Figure 9 shows the Fourier transforms

of a sine wave, the sampling function, and a rectangular window, each

alone.

So now we are ready to calculate the Fourier transform of a

finite set of data. Ne simply multiply (signal) X (sampling function) X

(window) and transform. The convolution theorem states that the result

is simply the convolutlon in the frequency domain of the three individ-

ual Fourier transforms.

For slmplicity let the signal be the pure sine wave. Then the

result is easy, since delta functions convolve quite nicely wlth any-

thing else. Figure I0 shows the result of this process. We see immedi-

ately why we were so careful about aliasing, since the spectrum repeats

itself every I/T s. Also very important is the fact that the window

effectively spreads the energy of the sine wave into other frequencies.

Windowing

The fact that we cannot look at a signal for infinite time

necessitates the use of a window. As shown in Figure 10, the presence

of a window will distort the spectrum in comparison with that in the

case of a perfect transform. In the case of a rectangular window, the

sidelobes are down in amplltude only 13 dB. The main lobe is only I/T w

wide, however. Figure II shows the Fourier transforms of three popular

windows, the rectangular, Harm, and Flat Top. The Flat Top window has

the minimum amplitude sldelobes, but the main lobe is now five times as

wide. If we want to distinguish two different frequencies, the minimum

spacing between the two is now 5/T w.

This provides the criteria for selection of time span for the

experiment and the subsets of the data. For example, if we want to

distinguish frequencies as small as 10-6 Bz, then the window must be at

least 5 x 106 sec long if we use the Flat Top window. This translates

to an experiment duration of almost 58 days. If we used the
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rectangular window, we would still need over ii days. Also, if the

spectral intensity of two adjacent (about llTgxp apart) peaks differs by

more than 13 dB, then the rectangular window will not be suitable for

picking them out.

Averaging

If we have a data set that is sufficiently long that the

required window length for our frequency resolution measurements is some

fraction of the entire length, we have averaging options. The purpose

of averaging is to improve the measurement of random processes.

Power Spectrum Averaging: If we average successive power

spectra, the main improvement is in the standard deviation of the random

signal measurements. For a Gaussian process whose amplitude is constant

across the window bandwidth, the normalized standard deviation of the

amplitude measurement, o is as follows:

o = IA/(BwKTRECORD )

Where Bw is the window bandwidth, K is the number of records averaged,

and TRECORD is the record time length.

This process will not enhance the slgnal-to-noise ratio. Any

signal that is "buried" in the noise will not be enhanced, since the

noise amplitude will not be altered. Only our confidence in the accu-

racy of the random process measurements will be improved.

Time Averaging: Subsets of the time data can be averaged before

taking the spectra and the signal-to-noise ratio for some periodic

signal in a noisy environment enhanced. We must have some reference for

this process in order that the phase for the periodic process be the

same in the successive time records. If not, destructive interference

between averaged data sets can eliminate the signal-to-noise improve-

ment.

Numerically, the signal will be increased by a factor K by add-

ing K spectra. Random processes will only increase by a factor of /K.
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Hence, time averaging K spectra will yield a signal to noise ratio

improvement of /K.

This might be useful if we wanted co see the effect of some

process like the repeated firing of a correction rocket, whose times

could be accurately determined from some ocher source. These times

could then be used to properly synchronize the time averaged data sets.

In general, the process most often used to estimate acceleration

background on the earth is to average spectra. Here we assume chat the

processes are random in nature. A qualitative look at the time data

will show whether there are any discernible nonrandom processes. These

signals require special attention to identify the source. Otherwise,

spectral averaging will provide the most accurate estimates of ampli-

tude.

EXAMPLE EXPERIMENT

During July 1986, a Teledyne Geotech Model 44000 Borehole Seis-

mometer was used Co record acceleration data over a period of several

days. The data set discussed here spanned 72 hours, from approximately

12 PH 15JUL86 to 12 PM 18JUL 86. The primary purpose of the experiment

was to observe earth background from I Hz to the primary tidal frequen-

cies, 12 and 24 hours.

Sensor Selection

The Model 44000 Seismometer is a very high resolution accelerom-

eter. The package is tubular, approximately 6 feet in length and 3.75

inches in diameter. Three orChogonal axes of accelerometer reside

within. The sensors use a capacitive position sensor and active feed-

back for response stabilization.

Anticipated tidal accelerations were approximately 100 nano-g

peak. The instrument noise floor is lower than 10 -20 g2/Hz, with a

bandwidth of 4 Hz in its present configuration. Optional bandwidths at

higher frequencies are possible by changing the feedback parameters.
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Small signal llnearlty is greater than 106 , and dynamic range is greater

than 120 dB. The response was set for 2 X 104 V/m/s 2 from dc to 4 Hz.

The maximum anticipated slgnal output was 10 -6 g. We anticipated no

significant dynamic range or noise problems, as the predicted spectral

intensity of the tidal fluctuations was expected to be greater than

10-13 g2/Hz.

Amplifier and Filter

A speclal filter with dc to 0.I Nz bandwidth was employed with a

gain of 50 in the passband. The filter has response that is down by

over I00 dB at 2.5 Hz, the Nyquist frequency for this experiment.

Digitizer

A 16-bit digitizer running at a 5-Hz sample rate was used to

collect the filtered data. The quantlzation noise, referred to as

acceleration, was 1.6 X 10 -23 g2/Hz. The digitizer LSB was 3 X I0 -II g.

With 96 dB of dynamic range, the anticipated spectral intensity was

within the limits of the digitizer. The data were recorded on standard

I/2 inch, 9-track, 1600 BP! magnetic tape.

Analysis

The raw data were decimated by 10, since the spectral content

was not sufficient to induce aliaslng in this process. Next, a linear

trend was removed. The flnal time domain process was to digitally

filter and decimate by another factor of I0 in order to yield a data set

of 12,960 samples over a period of 259,200 sec with a sample rate of

0.05 samples/sec. Figure 12 shows the time record in comparison to pure

calculated tidal data. The bar shows an amplltude of 50 _gal, which is

equal to 50 nano-g. The glitches are teleseismic earthquakes. Quite

good agreement with the theoretical data is shown.

The data set was transformed using a standard Fast Fourier

Transform (FFT). The result is shown in Figure 13. The minimum
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frequency was 3.86 X 10 -6 Hz, which is slmply the reciprocal of the

record length. Peaks at 1.2 X 10 -5 Hz and 2.3 X 10 -S Hz overlap one

another. In this case, the experiment was not long enough to discern

both peaks spectrslly. The time series clearly shows the presence of

both, however.

This experiment is intended to show the potential resolution at

long periods, and the probIems associated with long period data analy-

sis. We were able to obtain good data for frequencies as low as 10 -5

Hz, even though our minimum frequency was lower. The experiment dura-

tion was 3 days. To resolve frequencies as low as 10 -6 HZ, a continuous

experiment of one month would be necessary!

CONCLUSION

The discussion above has been intended essentially as a primer

on the topics of acquisition and analysis of acceleratlon data. Both

areas require careful consideration if an experiment is to be successful

and meaningful.

It is the author's belief that careful design of the experiment

is the first step in data analysis. For long periods, the experiment

duration must be adequate. Issues such as power stability, data storage

capacity, and rellability become very important for ultra low frequency

measurements.

The sensor must also be selected carefully, since stability and

low noise at ultra long periods are essential to the acquisition of high

quality data.

Finally, even slmple analysis has caveats and assumptions that

must be kept in mind throughout any experiment. The very nature of

sampling and the finiteness of the experiment alter the Fourier trans-

form of the measured signal. An understanding of the basics is impor-

tant to proper interpretation of end results.
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